Платежные системы. Ипотека. Калькуляторы. Банки. Яндекс Деньги. WebManey. Общая информация

Платежные системы. Ипотека. Калькуляторы. Банки. Яндекс Деньги. WebManey. Общая информация

» » Первое глубоководное разведочное устройство в мире. Самый глубоководный аппарат. Погружение к затонувшим подлодкам

Первое глубоководное разведочное устройство в мире. Самый глубоководный аппарат. Погружение к затонувшим подлодкам

начнутся на озере Байкал в первой половине дня в четверг, сообщила РИА Новости заместитель директора по связям с общественностью Фонда содействия сохранения Байкала Инна Крылова.

Глубоководные обитаемые аппараты (ГОА) «Мир‑1» и «Мир‑2» были построены в Финляндии фирмой Rauma‑Repola в 1987 году. Аппараты создавались под научно‑техническим руководством ученых и инженеров Института океанологии РАН имени П.П.Ширшова. Создание аппаратов было начато в мае 1985 года и закончено в ноябре 1987 года. В декабре 1987 года были проведены глубоководные испытания аппаратов в Атлантике на глубине 6170 метров («Мир‑1») и 6120 метров («Мир‑2»). Аппараты были установлены на судне обеспечения «Академик Мстислав Келдыш», построенном в 1981 году в Финляндии и переоборудованном в 1987 году для проведения работ с глубоководными испытательными аппаратами.

С применением ГОА «Мир‑1» и «Мир‑2» проведено 35 экспедиций в Атлантический, Тихий и Индийский океаны, из них девять экспедиций по ликвидации последствий аварий атомных подводных лодок (АПЛ) «Комсомолец» и «Курск». Разработан ряд новейших глубоководных технологий и методик, что позволило осуществлять многолетний радиационный мониторинг на АПЛ «Комсомолец», которая находится на дне Норвежского моря на глубине 1700 метров, и произвести частичную герметизацию носовой части лодки. Российскими научными учреждениями разработана методика, которая позволила с помощью аппаратов «Мир» провести детальное обследование АПЛ «Курск», определить причину ее аварии и разработать меры по ликвидации последствий этой аварии.

В 1991 и 1995 годах с помощью «Миров» производились исследования корпуса «Титаника», лежащего на глубине 3800 метров. В процессе погружений были проведены уникальные киносъемки, которые были использованы для создания художественных и научно‑популярных фильмов, среди которых ‑ Titanica, Titanic, Bismarck, Aliens of the Deep, Ghost of the Abyss.

В январе‑сентябре 2004 года силами Института океанологии РАН совместно с ФГУП «Факел» был проведен капитальный ремонт аппаратов «Мир» с их полной разборкой, испытаниями прочности корпусов, частичной заменой элементов, узлов и оборудования, последующей сборкой и испытаниями вновь собранных аппаратов. В результате «Мир‑1» и «Мир‑2» получили сертификат на класс от международного регистра «Германский Ллойд» до 2014 года.

2 августа 2007 года в рамках экспедиции «Арктика‑2007» был совершен первый в мире спуск глубоководных обитаемых аппаратов «Мир» в точке географического Северного полюса на глубину 4300 метров. Во время этого беспрецедентного погружения на дне был установлен титановый российский флаг. Достижения этой экспедиции занесены в книгу рекордов Гиннеса.

В настоящее время в Институте океанологии РАН прорабатывается несколько проектов, в рамках которых предполагается проведение научных исследований и подводно‑технических работ с применением ГОА «Мир‑1» и «Мир‑2». Один из проектов ‑ комплексные исследования океана в кругосветном плавании судна «Академик Мстислав Келдыш». Во время этой экспедиции планируется изучить гидротермальные поля на дне в различных районах Мирового океана и провести погружения на несколько затонувших объектов.

В 2008‑2009 годах пройдет научно‑исследовательская экспедиция «Миры» на Байкале». Комплексная программа научного исследования озера Байкал подготовлена Российской академией наук. Большая часть исследовательской программы будет осуществлена с применением глубоководных обитаемых аппаратов «Мир». Целью экспедиции является сбор информации и использование полученных данных в прогнозировании различных природных процессов, погружение на максимальные отметки дна озера Байкал, исследование мест выхода подводных гидротермальных источников и грязевых вулканов, изучение дна Баргузинского залива. Среди задач экспедиции также - исследование углеводородов Байкала и определение их запасов, получение точных данных о тектонических процессах на дне озера, состоянии береговой линии, поиск археологических артефактов.

Технические характеристики обитаемых глубоководных аппаратов «Мир»:

Рабочая глубина погружения ‑ 6000 метров

Запас энергообеспечения ‑ 100 кВт‑час

Запас жизнеобеспечения ‑ 246 чел.‑час

Максимальная скорость ‑ 5 узлов

Запас плавучести (с поверхности) ‑ 290 килограммов

Сухой вес ‑ 18,6 тонны

Длина ‑ 7,8 метра

Ширина (с боковыми двигателями) ‑ 3,8 метра

Высота ‑ 3 метра

Экипаж ‑ 3 человека

Материал подготовлен на основе информации РИА Новости и открытых источников

0

Наверное, заслуги глубоководных обитаемых аппаратов «МИР» и одного из их создателей — ученого и Героя России Анатолия Михайловича Сагалевича — нет надобности перечислять. Это и самое большое в истории количество погружений к «Титанику», и беспрецедентные научные открытия новых видов животных, и погружения к «Курску», «Комсомольску», «Бисмарку», и исследования «черных курильщиков»… Этот список можно продолжать очень долго, хватит на целую книгу достижений.

Казалось бы — вот он, готовый повод гордиться достижениями страны. Исследования, открытия — это чудесно, надо продолжать погружаться! Но некоторое непонимание закрадывается в голову, когда узнаешь, что вот уже пятый год эти чудеса техники стоят без дела. Еще больше вопросов возникает, когда начинаешь узнавать их настоящую историю.

Взгляните, например, на этот китайский аппарат под названием «Цзяолун». Он был построен в 2010 году и способен погружаться на глубину 7000 метров. Ничего не напоминает?

ГОА «Цзяолун», глубоководный обитаемый аппарат, способный погружаться на 7000 метров — глубже, чем любой другой в мире

Действительно, он невероятно похож на российские «МИРы». Форма, характеристики и даже окраска. И это неудивительно, ведь именно их конструкция взята за основу, так как ее признали одной из самых совершенных и наиболее удачных. Главным техническим консультантом был никто иной, как Анатолий Михайлович Сагалевич.

Интересно, что в то время, как уникальная и не имеющая аналогов в мире «тандемная» система «МИРов» простаивает без дела вот уже пять лет, китайские чиновники начали в полной мере осознавать всю важность глубоководных исследований, ведь там, на глубине многих тысяч метров, находятся действительно несметные природные богатства. Построив аппарат «Цзяолун», они стали обладателем самого глубоководного аппарата в мире. На исследовательскую программу выделяются сотни миллионов долларов, и это государственные средства. Запущена обширная программа подготовки глубоководных пилотов, престиж профессии которых теперь сопоставим с профессией космонавта. Каждый глубоководный ученый — гордость страны, герой страны. Когда-то так же было в СССР.

Китайские пилоты с гордостью держат китайский флаг перед тестовым погружением «Цзяолун»

Стоит на этом фоне кратко вспомнить историю «МИРов» в современной России. Начиная с 1991 года на государственные деньги не было организовано ни одной масштабной экспедиции. Ни одной. Все научно-исследовательские экспедиции были организованы и финансированы либо частными лицами и компаниями, либо зарубежными организациями.

Вспомнить даже самые известные из них — например, серию погружений на Байкал в 2008-2010 годах. Все три экспедиции были организованы на частные деньги одного из депутатов Госдумы — просто он тоже энтузиаст. На его же (а не государственные) деньги погружался на Байкал в 2009 году и первый человек в государстве.


Владимир Путин во время погружения на Байкал

И стоит вспомнить самую, наверное, известную (и даже историческую), невероятную по своей сложности экспедицию «МИРов» на Северный Полюс — Арктика-2007. Во время нее впервые в истории человечества удалось достичь настоящей точки Северного Полюса, которая находится на глубине более 4000 метров. Когда эта точка была достигнута, на дно был установлен небольшой российский флаг. Конечно, это не было заявкой на владение Россией Северным Полюсом, как многие пытались представить, это был чисто символический акт. Но все-таки повод для гордости, не так ли? И действительно, об этом событии день и ночь вещали все СМИ страны, звучали фанфары, официальные лица не сходили с экранов.

Артур Чилингаров, Анатолий Сагалевич и Владимир Груздев перед историческим погружением

Установка российского флага в точке географического Северного Полюса

А теперь самое интересное. Эта экспедиция «национальной гордости» организовывалась не на государственные деньги. И даже вообще не на российские. Она была финансирована по большей части двумя иностранными гражданами — шведским ученым и филантропом Фредериком Паулсеном и австралийским исследователем Майком МакДауэллом. Наверное, это как если бы полет Юрия Гагарина был оплачен американскими меценатами. Такая вот «духовная скрепа».

Гражданин Швеции Фредерик Паулсен, финансировавший российскую экспедицию Арктика-2007

Подобным образом на иностранном финансировании «МИРы» и смогли продержаться «на плаву» так долго. Все это целиком и полностью личная заслуга Анатолия Михайловича Сагалевича, чей дипломатический талант помог спасать и использовать аппараты «МИР» в течение 20 лет. Но и его возможности не безграничны. Вот уже который год ученый пытается добиться приемлемого финансирования глубоководной программы. Не раз обращался даже к главе государства. В ответ лишь отговорки и бессрочные обещания. А время идет, возможности уходят. «МИРы» должны проходить полный технический осмотр каждые 10 лет. Последний проводился в 2005 году. В 2015 необходим был новый, но он так и не состоялся из-за отсутствия финансирования — теперь «МИРы» в океан могут и не выпустить.
Пилоты тоже не бессмертные. Самому младшему на данный момент уже перевалило за 60 (!) лет. А новых не предвидится, ибо тренировать их не на чем, да и за такую «большую» зарплату кто из молодых согласится посвящать свою жизнь науке?

Вручение Анатолию Сагалевичу звезды Героя России, 2008

В этой ситуации только и остается, что грустно вздохнуть и отправиться помогать туда, где опыт и знания востребованы. Именно поэтому аппарат «Цзяолун» так похож на «МИР» — китайцы невероятно ценят опыт и помощь А. М. Сагалевича в создании аппарата. Сам ученый регулярно посещает различные верфи во многих странах, где строятся новые и новые аппараты — знания специалиста такого класса на вес золота во всем мире. Кроме, однако, России.

Китайские власти поняли, что гонка за исследование больших глубин (так называемых ультраабиссальных) снова набирает обороты. Строительство новых аппаратов планируется в США, Японии и Великобритании. Поэтому китайские чиновники решили не останавливаться на достигнутом — на аппарате «Цзяолун» — и пошли дальше, намного дальше.

В данный момент Научный центр по изучению ультраабиссальной зоны при Шанхайском океанографическом университете занимается разработкой беспрецедентного глубоководного аппарата под названием «Цайхунъюй» — «Гуппи» стоимостью 80 миллионов долларов. Это обитаемый аппарат, который будет способен опускаться на дно Марианской впадины — на глубину более 11000 метров.

ГОА «Цайхунъюй» — «Гуппи», который спустится на дно Марианской впадины в 2019 году

Таких аппаратов за всю историю человечества было всего два — «Триест» в 1953 и «Дипси Челленджер» в 2012. Но что самое главное — это будет не просто батискаф, способный только подниматься и опускаться, как два вышеупомянутых аппарата, это будет полноценный научный аппарат, рассчитанный на экипаж из трех человек и способный выполнять весь спектр научных глубоководных исследований — аналог «МИРов». Начать строительство планируется уже в этом году, а погружение во впадину запланировано на 2019 год. Специально под «Гуппи» уже начато строительство судна-носителя стоимостью 220 миллионов долларов. Можно с уверенностью утверждать, что как только китайцы закончат аппарат и поставят его на судно-носитель, безусловная пальма первенства перейдет к ним.

Одним из соавторов проекта является (как вы уже могли догадаться) Анатолий Михайлович Сагалевич. Он — один из главных технических консультантов и регулярно посещает Шанхай. И что в этой истории самое интересное: Анатолий Михайлович понимает, что данный аппарат — уникальный, обладание таким дает невероятные возможности. Поэтому еще на самых первых стадиях создания «Гуппи» ученый и Герой России обратился к российским официальным лицам с казалось бы более чем отличным предложением — построить совместно с китайцами второй такой же аппарат, но уже с российской стороны. Более того, китайцы сами с интересом поддержали эту идею. Получился бы новый глубоководный «тандем» — аналог «МИРов» — которому уже действительно не было бы равных в мире, это была бы вершина технических достижений. Да и согласитесь, изучать океан с «братским народом Китая» — очень хороший вариант, особенно в нынешних условиях.

Но… (как бы хотелось, чтобы в этом месте не было союза «но»)

Российская сторона отказалась.

Юрий Гагарин в космос не полетит.


Единственное, что остается добавить — строчки из песни А. М. Сагалевича «Баллада об Институте»:

Ведь были раньше времена, когда богатая страна
Нам позволяла плыть в любой конец Земли.
Ну а теперь бюджета нет, все время ищем мы ответ
«Куда пристроить нам большие корабли?»

А есть отличный пароход, пусть он имеет тихий ход,
Но сняв «Титаник», популярным в мире стал.
С него «МИРы» нам надо снять, его в трехлетний фрахт отдать,
Чтобы с туристов он нам денежки качал.

«Зачем ученому оклад? Напишет он и так доклад,
Ведь Ломоносов пил один, но хлебный квас.
В два раза штаты сократить! Науку в бизнес превратить!» —
Пришел из чьей-то канцелярии приказ.

Не глядя на такой подход, мы прорываемся в поход,
И покоряем и Байкал, и Полюса.
Снимаем под водой кино, и вспоминаем Люблино
И продолжаем свято верить в чудеса.

Анатолий Сагалевич — Баллада об Институте

Полищук Максим (

История

Для исследовательских целей во всем мире было построено около полутора десятков подобных аппаратов. Но все они обладали одним существенным недостатком - привязка к кораблю обеспечения не позволяла вести автономных исследований.

Поэтому в мире стали строить мини-подлодки для исследовательских целей. Одним из первых такое «ныряющее блюдце» построил Ж.И. Кусто в 1957 году. Затем его примеру последовали другие конструкторы. В частности, сотрудники ленинградского института Гипрорыбфлота создали в 60-е годы XX века для Тихоокеанского НИИ морского рыбного хозяйства и океанографии 305-тонную субмарину «ТИНРО-1», способную «нырять» на 300 м, плавать там в любом направлении со скоростью 9 узлов, зависать над грунтом и садиться на него.

Пока первенец ленинградцев осваивался в стихии, инженеры работали над вторым аппаратом для дальневосточников. И вот 12 ноября 1974 года капитан Михаил Гире задраил крышку входного люка на «ТИНРО-2». Эта мини-субмарина была примерно в шесть раз короче предшественницы, в два раза уже и весила всего 10 т, при этом свободно оперировала на 400-метровой глубине.

В августе следующего года на Балтике началась проверка экспериментального подводного аппарата «ОСА-3-600», созданного на сей раз в московском отделении Гипрорыбфлота. Его стальной сферический корпус с четырьмя крыльчатыми движителями походил на «ныряющее блюдце» Кусто. Зато маневренность у «осы» была отменной, а рабочая глубина доходила до 600 м.

Словом, у каждого нового аппарата неизменно улучшаются те или иные характеристики и, конечно, увеличивается глубина погружения. Однако преодолеть километры, отделяющие поверхность океана от дна, способны только батискафы (в переводе с греческого - глубоководные суда).

В 1959 году в ленинградском отделении Гипрорыбфлота были созданы батискафы «Б-5» и «Б-11». Цифра в названии указывала максимальную глубину погружения в километрах. По замыслу разработчиков, каждый из них предстояло оснастить механической рукой-манипулятором, ловушкой для морских животных. При этом команда состояла из трех человек и могла вести и научные исследования.

Спустя шесть лет ленинградцы оформили проект «ДСБ-11» - батискафа, с помощью которого предполагалось изучать тектонические процессы на океанском дне.

Велись подобные разработки и за рубежом. В частности, в 70-е годы американские исследователи получили в свое распоряжение глубоководный аппарат «Алвин», известный, к примеру, тем, что в ноябре 1979 года обнаружил на дне Калифорнийского залива «черных курильщиков» - подводные гейзеры, выбрасывающие перегретую и насыщенную минеральными веществами воду. Причем вокруг каждого «курильщика» были обнаружены неведомые ранее формы жизни.

А в 1986 году «Алвин» опускался на дно в районе гибели знаменитого «Титаника ».

Гордостью же французов, в частности, является глубоководный аппарат «Наутил», способный работать на глубинах до 6 км. Титановый корпус позволяет команде из трёх человек вполне комфортно чувствовать себя на многокилометровой глубине.

Работает «Наутил» обычно в паре с подводным роботом «Робин», который при погружении располагается в носовой части аппарата. При достижении рабочей глубины робот начинает действовать самостоятельно, удаляясь от аппарата на длину соединительного кабеля (около 60 м).

Несколько особняком стоят глубоководные подводные аппараты Института океанологии имени П.П. Ширшова, базирующиеся на корабле науки «Академик Мстислав Келдыш».

Аппараты «Мир» были построены в 1987 году в Финляндии по совместному проекту Академии наук СССР и финского концерна «Раума-Репола». «Миры» рассчитаны на максимальную глубину погружения 6000 м. Это делает доступными для них 99 % акватории и дна Мирового океана - за исключением самых глубоких впадин.

Для противостояния давлению в 600 атмосфер отсеки прочного корпуса собраны из полусфер, отлитых из высоколегированной никелевой стали, которая оказалась вдвое прочнее, чем даже титановый сплав. По скорости подводного хода, возможности вертикального маневрирования, энергообеспечению и длительности пребывания под водой «Мирам» нет равных. В первую очередь это обеспечивается железоникелевыми аккумуляторами емкостью около 100 КВт/ч, что вдвое больше, чем у аналогов.

Со специальным обтекателем скорость аппарата доходит до 5 узлов. Обычно же для исследовательских работ достаточно и 3 узлов.

Гордость конструкторов - система балластировки, подобная той, что принята на подлодках: погружение и всплытие производятся путём заполнения водой и осушения балластных цистерн. Другие аппараты, как правило, всплывают за счёт сбрасывания балласта - крупной дроби из стали.

«Миры» оборудованы всеми необходимыми приборами для океанологических измерений, фото- и видеоаппаратурой. Силовые приводы и микропроцессорная система управления забортными манипуляторами позволяют и поднимать предметы весом до 80 кг, и весьма деликатно обращаться с биологическими объектами: на испытаниях оператор перекладывал сырое куриное яйцо, не повреждая его.

Связь с поверхностью поддерживается с помощью гидроакустической аппаратуры, что обеспечивает максимальную мобильность мини-подлодок. В особых случаях к аппарату можно пристыковать оптико-волоконный кабель для ведения «живой» трансляции с морского дна.

Запас кислорода и поглотителя углекислоты рассчитан на 10 часов работы экипажа из трёх человек плюс резерв на трое суток для аварийной ситуации.

Первое погружение на предельную глубину глубоководный обитаемый аппарат «Мир-1» совершил 13 декабря 1987 года. Экипаж в составе профессора И.Е. Михальцева, заведующего лабораторией научной эксплуатации глубоководных обитаемых аппаратов Института океанологии, доктора технических наук A.M. Сагалевича и финского пилота П. Лааксо опустился в Атлантическом океане до самого дна, на глубину 6170 м. На следующий день тот же экипаж, пересевший на «Мир-2», ещё раз опустился на дно Атлантики, достигнув глубины 6120 м.

В 1994 году американский World Technology Evaluation Center (центр, который регистрирует новейшие технологии) назвал «Миры» «...лучшими глубоководными обитаемыми аппаратами из когда-либо построенных в мире».

К 2007 году оба аппарата совершили более 300 погружений в рамках 35 научных экспедиций в трёх океанах. Они участвовали в самых разнообразных работах - от изучения таинственных «черных курильщиков» до герметизации корпуса затонувшей атомной подводной лодки «Комсомолец», лежащей на глубине 1700 м. А мировую популярность аппаратам принесли съёмки на затонувшем «Титанике» по заказу американских кинематографистов.

Чтобы доказать, что территория арктического дна геологически представляет собой часть Сибирской континентальной платформы, в сентябре 2007 года было совершено погружение «Мира-1» и «Мира-2» на дно Северного Ледовитого океана в точке географического Северного полюса.

Конструкция

Конструкция батискафа FNRS-3 Весьма перспективно использовать в качестве наполнителя поплавка литий - металл с плотностью почти в два раза меньшей, чем у воды (точнее 534 кг/м 3), это значит, что один кубический метр лития может удерживать на плаву почти на 170 кг больше, чем один кубический метр бензина. Однако литий - щелочной металл , активно реагирующий с водой , следует каким-то образом надёжно разделить эти вещества, не допустить их контакта. Механические свойства некоторых конструкционных материалов

Электропитание батискаф получает от аккумуляторов . Изолирующая жидкость окружает аккумуляторные банки и электролит , на неё через мембрану передаётся давление забортной воды. Аккумуляторы не разрушаются на огромной глубине.

Батискаф приводится в движение электрическими двигателями , движители - гребные винты . Электродвигатели защищаются таким же способом, как и аккумуляторные батареи. Если у батискафа отсутствует судовой руль - тогда поворот производился включением только одного двигателя, разворот почти на месте - работой двигателей в разные стороны.

Скорость спуска и подъём батискафа на поверхность регулируется сбрасыванием основного балласта в виде стальной или чугунной дроби , находящейся в воронкообразных бункерах. В самом узком месте воронки стоят электромагниты , при протекании электрического тока под действием магнитного поля дробь как бы «затвердевает», при отключении тока она высыпается.

Батискаф с поплавком, заполненным литием , будет иметь интересную особенность. Так как литий практически несжимаем, то при погружении относительная плавучесть батискафа будет увеличиваться (на глубине плотность морской воды возрастает), и батискаф «зависнет». Батискаф должен иметь компенсирующий отсек с бензином; для того, чтобы продолжить спуск, необходимо выпустить часть бензина, тем самым уменьшив плавучесть.

Система аварийного всплытия представляет собой аварийный балласт, подвешенный на раскрывающихся замках. От раскрытия замки удерживаются электромагнитами, для сброса достаточно отключить электрический ток. Аналогичное крепление имеют аккумуляторные батареи и гайдроп - длинный расплетённый свободно свисающий стальной канат или якорная цепь . Гайдроп предназначен для уменьшения скорости спуска (вплоть до полной остановки) непосредственно у морского дна. Если аккумуляторы разряжаются - автоматически происходил сброс балласта, аккумуляторов и гайдропа, батискаф начинает подъём на поверхность.

Погружение и всплытие батискафов

  • На поверхности батискаф удерживается за счёт отсеков, заполненных бензином и благодаря тому, что цистерны водяного балласта, шахта для посадки экипажа в гондолу и свободное пространство в бункерах с дробью заполнены воздухом.
  • После того, как цистерны водяного балласта, шахта для посадки экипажа в гондолу и свободное пространство в бункерах с дробью заполняются водой, начинается погружение. Эти объёмы сохраняют постоянное сообщение с забортным пространством для выравнивания гидростатического давления во избежание деформации корпуса.
  • Так как бензин (при высоком давлении) сжимается больше, чем вода, выталкивающая сила уменьшается, скорость погружения батискафа увеличивается, экипаж должен постоянно сбрасывать балласт (стальную дробь).

Определим массу полого шара: G = 1 6 π (D 3 − d 3) γ m {\displaystyle G={\frac {1}{6}}\pi (D^{3}-d^{3})\gamma _{m}}

Определим массу вытесненной шаром воды (при полном его погружении): V = 1 6 π D 3 γ v {\displaystyle V={\frac {1}{6}}\pi D^{3}\gamma _{v}} , где

D {\displaystyle D} - наружный диаметр батисферы;

D {\displaystyle d} - внутренний диаметр батисферы;

- удельный вес материала, из которого сделан корпус батисферы;

γ v {\displaystyle \gamma _{v}} - удельный вес морской воды ;

π {\displaystyle \pi } - число «Пи» .

Нас интересует толщина стенки батисферы, при которой возможно плавание в толще воды: S = D − d 2 {\displaystyle S={\frac {D-d}{2}}}

Поэтому приравняем оба уравнения (так как V = G {\displaystyle V=G} ) :

1 6 π (D 3 − d 3) γ m = 1 6 π D 3 γ v {\displaystyle {\frac {1}{6}}\pi (D^{3}-d^{3})\gamma _{m}={\frac {1}{6}}\pi D^{3}\gamma _{v}}

Теперь разделим обе его части на произведение 1 6 π D 3 {\displaystyle {\frac {1}{6}}\pi D^{3}} , после чего получим: (γ m − d 3 D 3) γ m = γ v {\displaystyle (\gamma _{m}-{\frac {d^{3}}{D^{3}}})\gamma _{m}=\gamma _{v}}

Теперь определим отношение d D {\displaystyle {\frac {d}{D}}} , разделив предыдущее равенство на γ m {\displaystyle \gamma _{m}} , получим d D = 1 − γ v γ m 3 {\displaystyle {\frac {d}{D}}={\sqrt[{3}]{1-{\frac {\gamma _{v}}{\gamma _{m}}}}}}

Примем: удельный вес морской воды γ v = 1 , 025 {\displaystyle \gamma _{v}=1,025} , удельный вес стали γ m = 7 , 85 {\displaystyle \gamma _{m}=7,85} , тогда d D = 0 , 9544 {\displaystyle {\frac {d}{D}}=0,9544} , отсюда S = D − d 2 = D 1 − 0 , 9544 2 = 0 , 0229 D {\displaystyle S={\frac {D-d}{2}}=D{\frac {{1}-{0,9544}}{2}}=0,0229D}

Таким образом, для того, чтобы стальная полая сфера плавала в толще воды, толщина её стенки должна составлять 0 , 0225 {\displaystyle 0,0225} наружного диаметра. Если стенка будет толще - батисфера утонет (ляжет на дно), если тоньше - всплывёт на поверхность.

Теперь рассчитаем, при каком давлении P {\displaystyle \mathrm {P} } будет раздавлена батисфера. Предположим, кораблестроители использовали довольно прочную сталь с допускаемым напряжением 5 000 кг/см 2 (обозначается σ {\displaystyle \sigma } ):

σ = P D 4 S {\displaystyle \sigma ={\frac {\mathrm {P} D}{4S}}} - элементарная формула прочности шара, испытывающего сжатие под давлением воды,

отсюда P = σ 4 S D = 5000 × 4 × 0 , 0229 = 458 k g / c m 2 {\displaystyle \mathrm {P} ={\frac {\sigma 4S}{D}}=5000\times 4\times 0,0229=458~kg/cm^{2}} . Данное давление соответствует глубине погружения 4 500 метров.

Если кораблестроители возьмут алюминиевый сплав с удельным весом γ m = 2 , 8 {\displaystyle \gamma _{m}=2,8} и σ = 6000 {\displaystyle \sigma =6000} кг/см 2 , тогда 1 − 1 , 025 2 , 8 3 = 0 , 86 {\displaystyle {\sqrt[{3}]{1-{\frac {1,025}{2,8}}}}=0,86} , а S = 1 − 0 , 86 2 = 0 , 0705 {\displaystyle S={\frac {{1}-{0,86}}{2}}=0,0705} , тогда P = σ 4 S D = 6000 × 4 × 0 , 0705 = 1692 k g / c m 2 {\displaystyle \mathrm {P} ={\frac {\sigma 4S}{D}}=6000\times 4\times 0,0705=1692~kg/cm^{2}} . Данное давление соответствует глубине погружения 16000 метров, этого будет достаточно чтобы покорить «

Прошедший в конце июня Международный военно-морской салон дал множество интересных новостей. Среди них были сообщения о разработках российских специалистов в области строительства глубоководных аппаратов. Сайт телеканала «Звезда» собрал пять самых интересных исследовательских и спасательных глубоководных аппаратов, которые используются Военно-морским флотом РФ.Глубоководный аппарат «Русь» и его модернизированная версия «Консул» Первым глубоководным аппаратом третьего поколения, построенным в России, стал аппарат «Русь». Ему долгое время принадлежал рекорд по погружению среди российских аппаратов. Он смог опуститься на 6180 метров.Аппарат принадлежит ВМФ РФ и предназначен для проведения исследований и подводных работ. Он может выполнять подводные технические работы с помощью манипуляторного устройства, обследовать подводные сооружения и объекты, доставлять на грунт или поднимать на поверхность предметы массой до 200 кг.Кроме того, он может перемещаться не только вертикально, но и горизонтально со скоростью до 3 узлов.На его борту находятся: гидроакустический комплекс с антенными устройствами, специализированный манипуляторный комплекс, забортная телекамера в прочном боксе, станция звукоподводной связи. Аппарат оборудован надежной системой безопасности. Впервые в мире предусмотрен отстрел нижней части аппарата при его аварийном прилипании к илу или грунту дна.Российские специалисты разработали модернизированную версию аппарата, который получил название «Консул» от слов «конкреции сульфида». Хоть аппарат и схож с батискафом проекта «Русь» по основным характеристикам, но предназначен для проведения геолого-геофизических исследований морского шельфа. «Консул» 14 мая 2011 года смог опуститься на глубину 6270 м.Батискафы «Мир-1» и «Мир-2» Два российских научно-исследовательских глубоководных обитаемых аппарата внесли огромный вклад в исследование мирового океана и озера Байкал. Батискафы могут погружаться до 6 км.В настоящее время аппарат «Мир-1» находится в качестве экспоната в калининградском Музее Мирового океана, а «Мир-2» базируется на борту научно-исследовательского судна «Академик Мстислав Келдыш».
«Миры» использовались во время экспедиции к затонувшей атомной подлодке «Комсомолец». Тогда аппараты 70 раз опускались на глубину 1700 м. В 2000 году опускались к АПЛ «Курск», чтобы установить причину гибели субмарины.С применением ГОА «Мир-1» и «Мир-2» в период 1987 по 1991 год проведено 35 экспедиций в Атлантический, Тихий и Индийский океаны, а 2 августа 2007 года впервые в мире было достигнуто дно Северного Ледовитого океана на Северном полюсе, где был размещён Российский флаг и капсула с посланием будущим поколениям.АС-30 Военно-морской флот России использует глубоководные аппараты проекта 1855 шифр «Приз».Одним из самых современных аппаратов этой серии считается аппарат АС-30. Недавно он прошел модернизацию, в ходе которой на нем полностью было заменено морально устаревшее специальное оборудование на системы цифрового поколения.В отличие от «Миров» этот в задачу аппарата не входят научные и океанографические исследования, он предназначен для спасения экипажей с аварийных подводных лодок путем стыковки к аварийным выходам подлодок.
Эксперты считают аппараты этого проекта самыми эффективными аппаратами спасения в российском флоте.Аппарат был оснащен телекамерами, манипуляторами способными перерезать металлические тросы диаметром до 10 мм, вести подводные сварочные работы, закручивать и выкручивать гайки. Он обладает специальным устройство для стыковки с комингс-площадкой подводной лодки, через которую подводники покидают аварийную субмарину.АС-34 Еще один аппарат этой серии АС-34 находится в строю ВМФ РФ. Он располагается на борту спасательного судна «Георгий Титов». Модернизация, которую недавно прошел АС-34, позволила продлить срок службы батискафа до 2032 года.
Корпус спасательного судна выполнен из титана. И хотя рабочая глубина СГА 500 метров, но при необходимости аппарат может опускаться и на глубину 1000 метров и эвакуировать подводников с аварийной лодки при повышенной задымленности, и с повышенным давлением. Второй отсек АС-34 используется как барокамера. Данный аппарат может принять на борт до 20 подводников.Обычно экипаж батискафа - три человека. Запас кислорода для работы трех человек рассчитан на 120 часов. На ситуацию со спасенными людьми - на 10 часов.Бестер-1 Еще одним новейшим глубоководным спасательным аппаратом является АС-40 «Бестер-1». В прошлом году он заступил на боевое дежурство во Владивостоке. Уникальный батискаф, превосходящий зарубежные аналоги, способен с глубины более 700 метров «сухим» путем эвакуировать экипаж терпящей бедствие подводной лодки.Он находится на борту головного спасательного судна Тихоокеанского флота «Игорь Белоусов», не имеющего ограничений по мореходности.
Отличительной особенностью «Бестера» является также то, что он быстро может стать мобильным. По словам экспертов, аппарат может использоваться не только с борта «Игоря Белоусова», но и с других спасательных судов, после того как будет оперативно переброшен грузовым самолетом на любой из флотов.

Проект глубоководного аппарата "Мир".


1. Количество аппаратов проекта: 2


2. Изображение проекта:

ГОА "Мир-2" по состоянию на 2008 год


3. Состав проекта:


Наименование корабля

Заводской номер

закладка

спуск на воду

вступление в строй

ФИНЛЯНДИЯ: Компания "Rauma Repola"


4. История проекта:


Идея глубоководных обитаемых аппаратов (ГОА) и начальный проект были проработаны в АН СССР и КБ "Лазурит". ГОА и были построены в Финляндии концерном "Раума Репола" (Rauma Repola) в 1987 году. Аппараты создавались под научно-техническим руководством ученых и инженеров Института океанологии РАН имени П.П.Ширшова. Создание аппаратов было начато в мае 1985 года и закончено в ноябре 1987 года. В декабре 1987 года были проведены глубоководные испытания аппаратов в Атлантике на глубине 6170 метров () и 6120 метров (). Аппараты были установлены на судне обеспечения "Академик Мстислав Келдыш", построенном в 1981 году в Финляндии и переоборудованном в 1987 году для проведения работ с ГОА.

Обитаемый прочный корпус и балластные сферы ГОА изготовлены из никелевой стали специального назначения (Мартенситовая, сильно легированная сталь, с 18% никеля. Сплав имеет предел текучести - 150 кг/кв.мм (у титана - около 79 кг/кв.мм). Производитель: финская фирма "Локомо", входящая в состав концерна "Раума Репола"). Сферы собраны из полусфер, созданных путем непрерывного литья в форму и затем обработанных на станке. Обитаемая сфера имеет внутренний диаметр 2,1 м. Центральный пилотский иллюминатор имеет диаметр 200 мм, а два боковых - 120 мм. Балластные сферы могут вместить около тонны воды. Рама из нержавеющей стали связывает четыре сферических корпуса в единую конструкцию. Верхняя усиленная часть рамы оканчивается подъемным устройством, которое стыкуется с захватом троса спуско-подъемного устройства (СПУ). Внизу рама опирается на лыжи из синтактика и стеклопластика. Легкий корпус, в форме вытянутой капли, закрывает раму и всю внутреннюю начинку аппарата. Половинки корпуса выклеены из синтактика и кевлара. В корме установлено хвостовое оперение, его крыло поворачивается в горизонтальной плоскости, обеспечивая курсовую стабилизацию. Под легким корпусом расположены цистерны главного балласта, продуваемые сжатым воздухом.

Движительный комплекс представлен тремя гидромоторами с винтами, защищенными насадками. Отличная маневренность аппаратов обеспечивается возможностью поворота насадки маршевого движителя в диапазоне ±60° и поворотом в диапазоне +110° + -60° боковых движителей. Управление частотой оборотов и поворотом всех движителей осуществляется из кабины при помощи джойстика управления движением. За счет кормового движителя аппарат развивает скорость до 5 узлов. Боковые движители обеспечивают скорость хода около 1 узла. Энергетический комплекс состоит из 3 маслозаполненных аккумуляторных боксов. Из железо-никелевых аккумуляторов емкостью 700 А/ч собраны две батареи: с напряжением 120 В и запасом энергии 84 кВт/ч, питающая электромоторы 1 и 2-й систем гидравлики, наружные светильники и вспышку; и с напряжением 24 В и запасом энергии 17 кВт/ч, предназначенная для питания аппаратуры связи, навигации, фотокамер, измерительных датчиков. Аварийная никель-кадмиевая батарея установлена в прочной обитаемой сфере и питает электромотор 3-й системы гидравлики, которая используется для аварийного сброса боковых и кормового движителей, кистей манипуляторов, нижнего аккумуляторного бокса весом 1200 кг и отдачи аварийного буя с кевларовым тросом проводником. Твердый балласт - никелевая дробь - удерживается электромагнитами в стеклопластиковых бункерах. Все подвижные забортные устройства работают от гидропривода.

Система жизнеобеспечения ГОА не отличается от стандартных систем других аппаратов и включает: вентиляторы, прогоняющие воздух через кассеты с гидроокисью лития или натрия, кислородные баллоны с регуляторами расхода и приборы контроля атмосферы кабины. ГОА оборудованы системами надводной и подводной связи, навигации, обеспечивающей точную привязку аппаратов относительно донных маяков, измерительными комплексами, в состав которых входят до 9 гидрофизических датчиков, эхолотами, профилографами, магнитометрами, локаторами кругового и секторного обзора, теле- и фотосистемами, прожекторами и светильниками. Резервные вводы позволяют устанавливать на аппараты дополнительные комплексы и аппаратуру. Общий вес аппаратов составляет 18,5 т.

В январе-сентябре 2004 года силами Института океанологии РАН совместно с ФГУП "Факел" был проведен капитальный ремонт обоих ГОА с их полной разборкой, испытаниями прочности корпусов, частичной заменой элементов, узлов и оборудования, последующей сборкой и испытаниями вновь собранных аппаратов. В результате и получили сертификат на класс от международного регистра "Германский Ллойд" до 2014 года.

РАН разработан ряд оригинальных приборов, позволяющих значительно расширить возможности ГОА типа «Мир»:
- глубоководный малогабаритный телеуправляемый модуль «Сергеич» (глубина 6000 м), оборудованный высокоразрешающей телекамерой и светильниками, который устанавливается на ГОА, может уходить от него на расстояние 100 м и управляется по кабелю изнутри кабины аппарата;
- инерциальная система навигации, синтезированная на базе допплер-лага, гирокомпаса и глубиномера. Система дает возможность вычислять местоположение ГОА под водой с высокой точностью;
- ряд новых конструкций пробоотборников для взятия проб горячих флюидов из гидротерм, осадков и т.д.;
- гидроакустическая система, обеспечивающая выход ГОА в полынью, при проведении погружений в ледовых условиях. Система разработана специально для проведения глубоководных операций в Арктике.

В последнее время также разработан большой комплекс методик для проведения научных исследований с применением глубоководных обитаемых аппаратов. Кроме того, разработаны и внедрены в практику глубоководных работ две методики, основанные на новейших технологических разработках:
- методика прямой телевизионной трансляции пакета видеосигналов с глубины 3800 м по оптоволоконному кабелю на поверхность океана и далее через спутник на землю. Такая операция была проведена трижды. Во время последней операции 25 июля 2005 г. передачу с «Титаника» смотрел весь мир в течение 2,5 часов по каналу Discovery;
- методика проведения подводно-технических операций и глубоководной видеосъемки с применением 4-х обитаемых аппаратов одновременно. В сентябре 2003 г. два ГОА типа "Мир" и два американских аппарата "Deep Rover" встретились под водой на гидротермальном поле Lost City и провели интересный комплекс научных исследований и видеосъемок.

2 августа 2007 года в рамках экспедиции "Арктика 2007" был совершен первый в мире спуск глубоководных обитаемых аппаратов "Мир" в точке географического Северного полюса на глубину 4300 метров. Во время этого беспрецедентного погружения на дне был установлен титановый российский флаг. Достижения этой экспедиции занесены в книгу рекордов Гиннеса.

В настоящее время в Институте океанологии РАН прорабатывается несколько проектов, в рамках которых предполагается проведение научных исследований и подводно технических работ с применением ГОА. Один из проектов - комплексные исследования океана в кругосветном плавании судна "Академик Мстислав Келдыш". Во время этой экспедиции планируется изучить гидротермальные поля на дне в различных районах Мирового океана и провести погружения на несколько затонувших объектов.


5. Схема проекта: